Half integral weight modular forms: a survey

James Branch

University of Nottingham

Motivation

- How many ways are there of writing a positive integer n as a sum of 8 squares?
- What can we say about the coefficients of an L-function of an Elliptic curve?

Definition

Definition

A holomorphic function $f: \mathfrak{H} \rightarrow \mathbb{C}$ is a modular form of weight $k / 2$ and character χ

- $f(\gamma \tau)=\chi(d) \mathcal{J}(\gamma, \tau)^{k} f(\tau)$ for all $\gamma \in \Gamma_{0}(4 N)$
- f is holomorphic at all regular cusps of $\Gamma_{0}(4 N)$

Definition

Definition

A holomorphic function $f: \mathfrak{H} \rightarrow \mathbb{C}$ is a modular form of weight $k / 2$ and character χ

- $f(\gamma \tau)=\chi(d) \mathcal{J}(\gamma, \tau)^{k} f(\tau)$ for all $\gamma \in \Gamma_{0}(4 N)$
- f is holomorphic at all regular cusps of $\Gamma_{0}(4 N)$

Examples

- Powers of theta.
- Cohen-Eisenstein series: $\mathcal{H}_{k / 2}$
- The "first" cusp form: $f \in S_{1 / 2}\left(\Gamma_{0}(576), \chi_{12}\right)$
- The form $g=\eta(8 \tau) \eta(16 \tau) \theta(2 \tau)$

q-expansions of my examples

$\mathcal{H}_{1 / 2}=-1 / 12+1 / 3 q^{3}+1 / 2 q^{4}+q^{7}+q^{8}+q^{11}+4 / 3 q^{12}+2 q^{15}+3 / 2 q^{16}+O\left(q^{19}\right)$ and

$$
f=q-q^{25}-q^{49}+q^{121}+q^{169}-q^{289}-q^{361}+O\left(q^{401}\right)
$$

Linear combination:

$$
H_{k / 2}=\frac{\zeta(1-2 \lambda)}{2^{k}}\left[\left(1+i^{\lambda}\right) E_{k / 2}+i^{\lambda} F_{k / 2}\right]
$$

What does the Hecke theory look like? Recall in the integral weight case we have T_{p} maps

$$
a(n) \mapsto a(p n)+\chi(p) p^{k-1} a(n / p)
$$

What does the Hecke theory look like? Recall in the integral weight case we have T_{p} maps

$$
a(n) \mapsto a(p n)+\chi(p) p^{k-1} a(n / p)
$$

Special Feature!

What does the Hecke theory look like? Recall in the integral weight case we have T_{p} maps

$$
a(n) \mapsto a(p n)+\chi(p) p^{k-1} a(n / p)
$$

Special Feature! If $p \nmid 4 N$ then $T_{p^{2}}$ maps

$$
a(n) \mapsto a\left(p^{2} n\right)+\check{\chi}(p)\left(\frac{n}{p}\right) p^{\lambda-1} a(n)+\check{\chi}^{2}\left(p^{2}\right) p^{k-2} a(n / p)
$$

You can also define T_{p} but only when $p \mid 4 N$.

Fix some fundamental discriminant D. For a sequence $a(n)$ consider the map

$$
A_{D}(n)=\sum_{d \mid n} \chi(d)\left(\frac{\check{D}}{d}\right) d^{\lambda-1} a\left(\frac{|D| n^{2}}{d^{2}}\right)
$$

Can we define an L-function for $f=\sum a_{n} q^{n} \in S_{k / 2}(4 N, \chi)$?

Theorem (Shimura, '73)

Let $\lambda \geq 2$. If $f \in S_{k / 2}(4 N, \chi)$ then $\sigma_{D} f \in S_{2 \lambda}\left(2 N, \chi^{2}\right)$.

Theorem (Shimura, '73)

Let $\lambda \geq 2$. If $f \in S_{k / 2}(4 N, \chi)$ then $\sigma_{D} f \in S_{2 \lambda}\left(2 N, \chi^{2}\right)$.

What can we say if $\lambda=1$?

So long as f is not in the linear span of single variable theta series, $\sigma_{D} f \in S_{2 \lambda}\left(2 N, \chi^{2}\right)$

The Cohen-Eisenstein series $\mathcal{H}_{k / 2}$ has Shimura image

$$
\sigma_{D} \mathcal{H}_{k / 2}=\frac{1}{2} L\left(\chi_{D}, 1-\lambda\right) E_{2 \lambda}
$$

The Cohen-Eisenstein series $\mathcal{H}_{k / 2}$ has Shimura image

$$
\sigma_{D} \mathcal{H}_{k / 2}=\frac{1}{2} L\left(\chi_{D}, 1-\lambda\right) E_{2 \lambda}
$$

Another example

$$
\sigma[\eta(8 \tau) \eta(16 \tau) \theta(2 \tau)]=\eta(4 \tau)^{2} \eta(8 \tau)^{2}
$$

Fact

Shimura's map comutes with Hecke operators

$$
\sigma_{D} \circ T_{p^{2}}=T_{p} \circ \sigma_{D}
$$

The Shimura map is not injective!

Theorem (Tunnell, Thm 2, 1983)

The four forms

$$
g=\eta_{8} \eta_{16} \theta(2 \tau), \eta_{8} \eta_{16} \theta(4 \tau), \eta_{8} \eta_{16} \theta(8 \tau), \eta_{8} \eta_{16} \theta(16 \tau)
$$

all map to the same form $G=\eta(4 \tau)^{2} \eta(8 \tau)^{2}$ under σ_{D}.
FACT: We have $\sigma \circ V_{2}=V_{4} \circ \sigma$

The Shimura map is not injective!

Theorem (Tunnell, Thm 2, 1983)

The four forms

$$
g=\eta_{8} \eta_{16} \theta(2 \tau), \eta_{8} \eta_{16} \theta(4 \tau), \eta_{8} \eta_{16} \theta(8 \tau), \eta_{8} \eta_{16} \theta(16 \tau)
$$

all map to the same form $G=\eta(4 \tau)^{2} \eta(8 \tau)^{2}$ under σ_{D}.
FACT: We have $\sigma \circ V_{2}=V_{4} \circ \sigma$

Sketch proof.

Cipra: If $h(\tau)=f(4 \tau) \theta(\tau)$ then $\sigma h=f(\tau)^{2}$.

The Shimura map is not injective!

Theorem (Tunnell, Thm 2, 1983)

The four forms

$$
g=\eta_{8} \eta_{16} \theta(2 \tau), \eta_{8} \eta_{16} \theta(4 \tau), \eta_{8} \eta_{16} \theta(8 \tau), \eta_{8} \eta_{16} \theta(16 \tau)
$$

all map to the same form $G=\eta(4 \tau)^{2} \eta(8 \tau)^{2}$ under σ_{D}.
FACT: We have $\sigma \circ V_{2}=V_{4} \circ \sigma$

Sketch proof.

Cipra: If $h(\tau)=f(4 \tau) \theta(\tau)$ then $\sigma h=f(\tau)^{2}$. Substitute $f=\eta \eta_{2}$ and combine with the FACT: The three other forms are twists!

Theorem (Waldspurger-Kohnen-Zagier)

Let $f=\sigma^{*} F, \check{D}>0$ then

$$
\frac{a(|D|)}{\langle f, f\rangle}=2^{\omega(4 N)} \frac{(\lambda-1)!}{\pi^{\lambda}}|D|^{k / 2-1} \frac{L\left(F \otimes \chi_{D}, \lambda\right)}{\langle F, F\rangle} .
$$

Here $\langle\cdot, \cdot\rangle$ is normalized.

