Half integral weight modular forms: a survey

James Branch

University of Nottingham

Motivation

- How many ways are there of writing a positive integer *n* as a sum of 8 squares?
- What can we say about the coefficients of an *L*-function of an Elliptic curve?

Definition

Definition

A holomorphic function $f:\mathfrak{H}\to\mathbb{C}$ is a modular form of weight k/2 and character χ

- $f(\gamma \tau) = \chi(d) \mathcal{J}(\gamma, \tau)^k f(\tau)$ for all $\gamma \in \Gamma_0(4N)$
- f is holomorphic at all regular cusps of $\Gamma_0(4N)$

Definition

Definition

A holomorphic function $f:\mathfrak{H}\to\mathbb{C}$ is a modular form of weight k/2 and character χ

- $f(\gamma \tau) = \chi(d) \mathcal{J}(\gamma, \tau)^k f(\tau)$ for all $\gamma \in \Gamma_0(4N)$
- f is holomorphic at all regular cusps of $\Gamma_0(4N)$

Examples

- Powers of theta.
- Cohen-Eisenstein series: $\mathcal{H}_{k/2}$
- The "first" cusp form: $f \in S_{1/2}(\Gamma_0(576), \chi_{12})$
- The form $g = \eta(8 au)\eta(16 au) heta(2 au)$

q-expansions of my examples

$$\mathcal{H}_{1/2} = -1/12 + 1/3q^3 + 1/2q^4 + q^7 + q^8 + q^{11} + 4/3q^{12} + 2q^{15} + 3/2q^{16} + O(q^{19})$$
 and

$$f = q - q^{25} - q^{49} + q^{121} + q^{169} - q^{289} - q^{361} + O(q^{401})$$

Linear combination:

$$H_{k/2} = \frac{\zeta(1-2\lambda)}{2^k} \left[(1+i^\lambda) E_{k/2} + i^\lambda F_{k/2} \right]$$

What does the Hecke theory look like? Recall in the integral weight case we have T_p maps

$$a(n)\mapsto a(pn)+\chi(p)p^{k-1}a(n/p)$$

What does the Hecke theory look like? Recall in the integral weight case we have T_p maps

$$a(n) \mapsto a(pn) + \chi(p)p^{k-1}a(n/p)$$

Special Feature!

What does the Hecke theory look like? Recall in the integral weight case we have T_p maps

$$a(n) \mapsto a(pn) + \chi(p)p^{k-1}a(n/p)$$

Special Feature! If $p \nmid 4N$ then T_{p^2} maps

$$\mathsf{a}(n)\mapsto \mathsf{a}(p^2n)+\check{\chi}(p)\left(rac{n}{p}
ight)p^{\lambda-1}\mathsf{a}(n)+\check{\chi}^2(p^2)p^{k-2}\mathsf{a}(n/p)$$

You can also define T_p but only when p|4N.

Fix some fundamental discriminant D. For a sequence a(n) consider the map

$$A_D(n) = \sum_{d|n} \chi(d) \left(\frac{\check{D}}{d}\right) d^{\lambda-1} a\left(\frac{|D|n^2}{d^2}\right).$$

Can we define an *L*-function for $f = \sum a_n q^n \in S_{k/2}(4N, \chi)$?

Theorem (Shimura, '73)

Let $\lambda \geq 2$. If $f \in S_{k/2}(4N, \chi)$ then $\sigma_D f \in S_{2\lambda}(2N, \chi^2)$.

Theorem (Shimura, '73)

Let $\lambda \geq 2$. If $f \in S_{k/2}(4N, \chi)$ then $\sigma_D f \in S_{2\lambda}(2N, \chi^2)$.

What can we say if $\lambda = 1$?

So long as f is not in the linear span of single variable theta series, $\sigma_D f \in S_{2\lambda}(2N,\chi^2)$

The Cohen-Eisenstein series $\mathcal{H}_{k/2}$ has Shimura image

$$\sigma_D \mathcal{H}_{k/2} = \frac{1}{2} L(\chi_D, 1 - \lambda) E_{2\lambda}$$

The Cohen-Eisenstein series $\mathcal{H}_{k/2}$ has Shimura image

$$\sigma_D \mathcal{H}_{k/2} = \frac{1}{2} L(\chi_D, 1 - \lambda) E_{2\lambda}$$

Another example

$$\sigma \left[\eta(8\tau)\eta(16\tau)\theta(2\tau)\right] = \eta(4\tau)^2\eta(8\tau)^2$$

Fact

Shimura's map comutes with Hecke operators

 $\sigma_D \circ T_{p^2} = T_p \circ \sigma_D$

The Shimura map is not injective!

Theorem (Tunnell, Thm 2, 1983)

The four forms

 $g = \eta_8 \eta_{16} \theta(2\tau), \, \eta_8 \eta_{16} \theta(4\tau), \, \eta_8 \eta_{16} \theta(8\tau), \, \eta_8 \eta_{16} \theta(16\tau)$

all map to the same form $G = \eta (4\tau)^2 \eta (8\tau)^2$ under σ_D .

FACT: We have $\sigma \circ V_2 = V_4 \circ \sigma$

The Shimura map is not injective!

Theorem (Tunnell, Thm 2, 1983)

The four forms

 $g = \eta_8 \eta_{16} \theta(2\tau), \, \eta_8 \eta_{16} \theta(4\tau), \, \eta_8 \eta_{16} \theta(8\tau), \, \eta_8 \eta_{16} \theta(16\tau)$

all map to the same form $G = \eta(4\tau)^2 \eta(8\tau)^2$ under σ_D .

FACT: We have $\sigma \circ V_2 = V_4 \circ \sigma$

Sketch proof.

Cipra: If $h(\tau) = f(4\tau)\theta(\tau)$ then $\sigma h = f(\tau)^2$.

The Shimura map is not injective!

Theorem (Tunnell, Thm 2, 1983)

The four forms

 $g = \eta_8 \eta_{16} \theta(2\tau), \, \eta_8 \eta_{16} \theta(4\tau), \, \eta_8 \eta_{16} \theta(8\tau), \, \eta_8 \eta_{16} \theta(16\tau)$

all map to the same form $G = \eta(4\tau)^2 \eta(8\tau)^2$ under σ_D .

FACT: We have $\sigma \circ V_2 = V_4 \circ \sigma$

Sketch proof.

Cipra: If $h(\tau) = f(4\tau)\theta(\tau)$ then $\sigma h = f(\tau)^2$. Substitute $f = \eta \eta_2$ and combine with the FACT: The three other forms are twists!

Theorem (Waldspurger-Kohnen-Zagier)

Let $f = \sigma^* F$, $\check{D} > 0$ then

$$rac{m{a}(|D|)}{\langle f,f
angle} = 2^{\omega(4N)}rac{(\lambda-1)!}{\pi^{\lambda}}|D|^{k/2-1}rac{L(F\otimes\chi_D,\lambda)}{\langle F,F
angle}.$$

Here $\langle \cdot, \cdot \rangle$ is normalized.